skip to main content


Search for: All records

Creators/Authors contains: "Huot, Yannick"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
    Phytoplankton photosynthetic physiology can be investigated through single-turnover variable chlorophyll fluorescence (ST-ChlF) approaches, which carry unique potential to autonomously collect data at high spatial and temporal resolution. Over the past decades, significant progress has been made in the development and application of ST-ChlF methods in aquatic ecosystems, and in the interpretation of the resulting observations. At the same time, however, an increasing number of sensor types, sampling protocols, and data processing algorithms have created confusion and uncertainty among potential users, with a growing divergence of practice among different research groups. In this review, we assist the existing and upcoming user community by providing an overview of current approaches and consensus recommendations for the use of ST-ChlF measurements to examine in-situ phytoplankton productivity and photo-physiology. We argue that a consistency of practice and adherence to basic operational and quality control standards is critical to ensuring data inter-comparability. Large datasets of inter-comparable and globally coherent ST-ChlF observations hold the potential to reveal large-scale patterns and trends in phytoplankton photo-physiology, photosynthetic rates and bottom-up controls on primary productivity. As such, they hold great potential to provide invaluable physiological observations on the scales relevant for the development and validation of ecosystem models and remote sensing algorithms. 
    more » « less
  2. Abstract

    The volume scattering functions for bulk and two submicron size fractions (passing through 0.7 μm GF/F and 0.2 μm membrane filters) were measured in the North Pacific Ocean using a LISST‐VSF to assess the contributions by submicron particles to the overall particle scattering. The contribution by submicron particles increased generally with scattering angle and peaked around 110°. The total backscattering by both submicron fractions did not vary, but that by larger particles increased, with the trophic level. Consequently, the fractional backscattering contribution by submicron particles decreased from approximately 50% to 30% as the chlorophyll‐a concentration increased from <0.1 to 0.3 mg m−3. Despite the experiment covering a limited range of trophic levels, our results confirm that backscattering by submicron particles in clear ocean waters is significant and seems to form a background independent of the backscattering by larger particles.

     
    more » « less
  3. The goal of the EXport Processes in the Ocean from RemoTe Sensing (EXPORTS) field campaign is to develop a predictive understanding of the export, fate, and carbon cycle impacts of global ocean net primary production. To accomplish this goal, observations of export flux pathways, plankton community composition, food web processes, and optical, physical, and biogeochemical (BGC) properties are needed over a range of ecosystem states. Here we introduce the first EXPORTS field deployment to Ocean Station Papa in the Northeast Pacific Ocean during summer of 2018, providing context for other papers in this special collection. The experiment was conducted with two ships: a Process Ship, focused on ecological rates, BGC fluxes, temporal changes in food web, and BGC and optical properties, that followed an instrumented Lagrangian float; and a Survey Ship that sampled BGC and optical properties in spatial patterns around the Process Ship. An array of autonomous underwater assets provided measurements over a range of spatial and temporal scales, and partnering programs and remote sensing observations provided additional observational context. The oceanographic setting was typical of late-summer conditions at Ocean Station Papa: a shallow mixed layer, strong vertical and weak horizontal gradients in hydrographic properties, sluggish sub-inertial currents, elevated macronutrient concentrations and low phytoplankton abundances. Although nutrient concentrations were consistent with previous observations, mixed layer chlorophyll was lower than typically observed, resulting in a deeper euphotic zone. Analyses of surface layer temperature and salinity found three distinct surface water types, allowing for diagnosis of whether observed changes were spatial or temporal. The 2018 EXPORTS field deployment is among the most comprehensive biological pump studies ever conducted. A second deployment to the North Atlantic Ocean occurred in spring 2021, which will be followed by focused work on data synthesis and modeling using the entire EXPORTS data set. 
    more » « less